نگاشت های طولپای خطی بین فضاهای توابع لیپشیتس

پایان نامه
چکیده

در این پایان نامه ابتدا مبحث فشرده سازی استون-چخ معرفی می شود سپس نقاط نهایی گوی واحد بسته ی دوگان فضاهای توابع لیپشیتس را تعیین می کنیم. با استفاده از این نقاط نگاشت های طولپای خطی بین فضاهای توابع لیپشیتس را بررسی می کنیم. در پایان این نگاشت ها را در حالتی که پوشا و سپس همبعد1 هستند تعیین می کنیم.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

نگاشت های خطی دوجداساز بین فضاهای لیپشیتس کوچک برداری مقدار

در این پایان نامه شرح کاملی از نگاشت های خطی دوجداساز بین فضاهای توابع لیپشیتس برداری مقدار ارائه می دهیم و از نتایج آن برای مطالعه پیوستگی خودکار چنین نگاشت هایی و همچنین طولپایی های خطی پوشا روی این فضاها استفاده می کنیم. فضای باناخ همه توابع کراندار و لیپشیتس را فضای لیپشیتس بزرگ تعریف می کنیم و نرم این فضا را نرم مجموع یا ماکزیمم در نظر میگیریم. زیرفضای بسته از این فضا را زیرفضای کوچک لیپشی...

نگاشت های خطی- حقیقی طولپای بین جبرهای تابعی مختلط بر فضاهای موضعا فشرده هاسدورف

فرض کنیم x و y فضاهای موضعاً فشرده ی هاوسدورف باشند، a و b به ترتیب جبرهای تابعی یکنواخت بسته بر x و y باشند و t : a ?b یک نگاشت خطی - حقیقی طولپای از a بروی b باشد. در این صورت یک نگاشت پیوسته مانند k :ch(b , y) ? ? با شرط , k(ch(b , y)) ? { z ? ?: ? z ?=1}, یک زیرمجموعه ی بسته و باز ch(b , y) مانند k (که ممکن است تهی باشد.) و یک همسانریختی مانند ? : ch(b , y) ? ch(a , x) وجود دارند به طوری که ...

نگاشت های خطی-حقیقی طولپای بین زیرفضاهای خاصی از فضای باناخ توابع مختلط-مقدار پیوسته

فرض کنیم فضاهای فشرده ی هاوسدرف باشند، aیک زیر فضای خطی-مختلط نیم x و y فضاهای فشرده ی هاوسدرف باشند، aیک زیر فضای خطی-مختلطc (x ) باشد که به نرم یکنواخت مجهز شده است و t: a c (y) یک نگاشت خطی –حقیقی طولپای باشد. هدف ما در این پایان نامه مشخص کردن ساختار t تحت شرایط خاصی بر aو t(a) است. بالاخص، در حالتی که a یک فضای تابعی یکنواخت بر x است و t(a) یک زیر فضای خطی-حقیقی c(y) است که در خاصیت تفکیک...

عملگرهای ترکیبی موزون بین فضاهای باناخ توابع لیپشیتس بردار -مقدار

ض کنیم (d ,x) یک فضای متریک فشرده و ( ? . ? , e ) یک فضای باناخ باشد. در این پایان نامه ابتدا به معرفی فضاهای توابع لیپشیتس بردار - مقدار (e ,(d? ,x))lip برای [1 ,0) ? ? و (e ,(d? ,x))lip برای (1 ,0) ? ? میپردازیم. سپس با تعریف یک نرم مناسب بر این فضاها، نشان میدهیم که این فضاها، فضاهای باناخ هستند. در ادامه شرایط لازم وکافی برای کرانداری و فشردگی عملگرهای ترکیبی موزون بین فضاهای توابع لیپش...

نگاشت های خطی دوجداساز بین برخی فضاهای لیپ شیتس

فرض کنیم[0،1) ? ? و e یک فضای باناخ و (x, d) یک فضای متریک موضعا فشرده باشد وlip0(x، e) فضای توابع لیپ شیتس کوچک e- باناخ مقدار تعریف شده بر فضای متریک هولدر موضعا فشرده( x , d^? )باشد که در بی نهایت صفر می شوند. در این پایان نامه نشان می دهیم، هر دوسویی خطی دوجداساز t:lip0(x,e) ? lip0(y,f)یک عملگر ترکیبی وزن دار به صورت t(f(y))=h(y)(f(p(y))), (f ?lip0(x,e), y ? y) است که در آن به ازای هر...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه اراک - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023